SPRING 2024

EE 330 Homework 5 Solutions

1. Length of interconnect $=60 \mathrm{um}$

Width of interconnect $=0.6 \mathrm{um}$ No.
of squares $=400 / 2=200$
Sheet resistance of interconnect $=23.5 \Omega /$ square
Resistance $=23.5 * 200=4700 \Omega$
Capacitance from interconnect to substrate
Capacitance of Poly 1 substrate from the table given $=84 a \mathrm{~F} / \mathrm{um}^{2}$
Interconnect area $=0.6^{*} 60=36 \mathrm{um}^{2}$
Capacitance of the substrate $=84 * 10^{\wedge}-18 * 36=3.024 \mathrm{fF}$
Capacitance between metal and interconnect
Capacitance of Poly and Metal1 from the table given $=56 \mathrm{aF} / \mathrm{um}^{2}$
Area of contact between poly and metal $=36 \mathrm{um}^{2}$
Capacitance $=56 * 10^{\wedge}-18 * 36=2.016 f F$
2. Length of the interconnect $=200 \mathrm{um}$

Width of interconnect $=2 \mathrm{um}$
No of squares $=200 / 2=100$.
Resistance $=20 \Omega$
Sheet resistance $=20 / 100=0.2 \Omega /$ square
Resistivity of copper $=1.72$ * $10^{\wedge}-8 \Omega \mathrm{~m}$
Thickness $=$ Resistivity $/$ Resistance $=86 \mathrm{~nm}$

For Ag =>
Sheet resistance $=$ Resistivity $/$ thickness $=1.59 * 10^{\wedge}-8 / 8.6^{*} 10^{\wedge}-8=0.185$

Length $=W * R / R s=216 u m$
3.

Overlap Cap			
Layers	Overlap Area ($\mu \mathrm{m} 2$)	$\mathrm{aF} /(\mu \mathrm{m} 2)$	$\begin{aligned} & \text { Cap } \\ & \text { (af) } \\ & \hline \end{aligned}$
Poly-Sub	89.1	84	7484.4
M1-Sub	4.86	27	131.22
M2-sub	15.12	12	181.44
M3-Sub	5.4	3	16.2
M1-Poly	24.3	56	1360.8
M2-Poly	25.92	15	388.8
M3-Poly	12.42	9	111.78
M2-M1	9.72	31	301.32
M3-M1	4.86	13	63.18
M3-M2	6.48	35	226.8
Fringe Cap			
Layers	Length ($\mu \mathrm{m}$)	$\mathrm{aF} /(\mu \mathrm{m})$	$\begin{aligned} & \text { Cap } \\ & \text { (af) } \\ & \hline \end{aligned}$
Poly-Sub	37.8	0	0
M1- Sub	9	49	441
M2-sub	15.6	33	514.8
M3-Sub	9.6	23	220.8
M1-Poly	5.4	59	318.6
M2-Poly	7.2	38	273.6
M3-Poly	3.6	28	100.8
M2-M1	5.4	51	275.4
M3-M1	3.6	34	122.4
M3-M2	7.2	52	374.4

4. Sheet resistance for high resistance poly $=44 \Omega \backslash \square$

Resistance $=3000 \Omega$
No. of squares $=3000 / 44=68$
$\mathrm{L}=3 \mathrm{~W}$; Let's use a $2 \lambda \times 2 \lambda$ for one square. The following layout is approximately 68 squares and the bounding rectangle meets the aspect ratio requirements.

Problem 5.
Designing a Capacitor using N^{+}active and Poly 1

$$
C=C_{p} \times \text { Area }
$$

$C_{p}=2434 \times 10^{-18}$
$C=150 \times 10^{-15}$

$$
\text { Area }=\frac{C}{C_{p}}=\frac{150 \times 10^{-15}}{2434 \times 10^{-18}}=61.63 \mu \mathrm{~m}
$$

Problem 6

$$
\begin{aligned}
& \text { Nominal Value of resistance }=\rho \cdot \frac{\text { Length }_{A_{r e a}}}{\text { From table/calculator relating } \rho \text { to resistivity }} \\
& \rightarrow \quad \rho=22.34 \Omega \cdot \mathrm{~cm}=22.34 \times 10^{-2} \Omega \mathrm{~m} \\
& \rightarrow \text { height (tHickness) }=0.1 \mu \mathrm{~m} \\
& \rightarrow \text { Area }=0.4 \mathrm{~m}^{2} \\
& \text { Length }=50 \mu \mathrm{~m} \\
& \Rightarrow \text { Nominal Value of resistance }=\frac{50}{0.4 \times 10^{-6}} \times 22.34 \times 10^{-2} \\
&=27.925 \mathrm{M} \Omega
\end{aligned}
$$

7. Part A:

Begin by calculating the number of squares in each serpentine structure. We can calculate the number of horizontal lines in the serpentine structures as follows:

So we have 50,000 horizontal lines, each 1 cm long. This amounts to 5×10^{9} squares.

To connect these lines, we have $N_{\text {Horizontal }}-1$ vertical segments, each 0.1μ wide. This amounts to 49,999 squares.

In total, we have $5 \times 10^{9}+49999$ squares per resistor. Each metal layer has a resistivity of $0.12 \Omega / s q$, so each resistor has a resistance of $600 \mathrm{M} \Omega$. When combined in parallel, we have a resistance of $200 \mathrm{M} \Omega$.

Part B:
Each resistor is only $0.1 \mu \mathrm{~m}$ thick, so each can carry a maximum density of $150 \mu \mathrm{~A}$. Placed in parallel, this means the total resistor can carry up to $450 \mu A$.

Part C:

$$
P=I^{2} R=[450 \mu A]^{2}[200 \mathrm{M} \Omega]=40.5 \mathrm{~W}
$$

Problem 8 If the resistance in the interconnect is neglected, it acts as a capacitor in parallel with the input capacitance of the second inverter.
a) $R_{P Q}=2 \mathrm{~K} \quad t_{H_{L}}=R_{P Q}\left(c_{L}\right)$

$$
\begin{aligned}
& C_{x}=\left(C_{\theta}\right)(\omega L) \\
& C_{\theta}=27 \mathrm{af} / \mathrm{m}^{2}
\end{aligned}
$$

$$
C_{x}=(.6 \mu)^{2}\left(27 a f / \mu^{2}\right)
$$

$$
=9.2 \mathrm{Af}
$$

$$
C_{L}=3 f F+9.7 a F \simeq 3.01 \mathrm{fF}
$$

$\therefore t_{H L_{L}} \simeq 6.02 \mathrm{psec}$
b) If $L=200 \mu$

$$
\begin{aligned}
& \quad C_{I}=(.6)(200) 27 \mathrm{af} / \mathrm{M}^{2}=3.24 \mathrm{fF} \\
& \therefore \quad C_{L}=35 \mathrm{~F}+3.24 \mathrm{fF}=6.24 \mathrm{fF} \\
& \therefore \quad t_{H_{L}}=(2 \mathrm{k})(6.24 \mathrm{fF})=12.5 \mathrm{psp}
\end{aligned}
$$

c) The only change with poly (again negleting the interconnect resistance) is $\mathrm{Cd}=84 \mathrm{af} / \mathrm{u}^{2}$ so
$\mathrm{C}_{\mathrm{I}}=(0.6)(200) 84 \mathrm{af} / \mathrm{u}^{2}=10.1 \mathrm{fF}$ so $\mathrm{C}_{\mathrm{L}}=13.1 \mathrm{fF}$ and thus $\mathrm{tHL}=(2 \mathrm{~K})(10.1 \mathrm{fF})=20.2 \mathrm{psec}$

