SPRING 2024

EE 330 Homework 5 Solutions

1. Length of interconnect = 60um

Width of interconnect = 0.6um No.

of squares = 400/2 = 200

Sheet resistance of interconnect = 23.5Ω /square

Resistance = $23.5*200 = 4700\Omega$

Capacitance from interconnect to substrate

Capacitance of Poly 1 substrate from the table given = $84aF/um^2$

Interconnect area = $0.6*60 = 36um^2$

Capacitance of the substrate= 84 * 10^-18 *36 = 3.024fF

Capacitance between metal and interconnect

Capacitance of Poly and Metal1 from the table given = $56aF/um^2$

Area of contact between poly and metal = 36um²

Capacitance = 56 * 10^-18 *36 = 2.016fF

2. Length of the interconnect = 200um

Width of interconnect = 2um No of squares = 200/2 = 100. Resistance = 20Ω Sheet resistance = $20/100 = 0.2 \Omega$ /square Resistivity of copper = $1.72 * 10^{-8} \Omega$ m Thickness = Resistivity/Resistance = 86nm

For Ag =>

Sheet resistance = Resistivity /thickness = 1.59 * 10^-8/ 8.6* 10^-8 = 0.185

Length = $W^R/Rs = 216um$

Overlap Cap			
Layers	Overlap Area (µm2)	aF/(μm2)	Cap (af)
Poly-Sub	89.1	84	7484.4
M1- Sub	4.86	27	131.22
M2-sub	15.12	12	181.44
M3-Sub	5.4	3	16.2
M1-Poly	24.3	56	1360.8
M2-Poly	25.92	15	388.8
M3-Poly	12.42	9	111.78
M2-M1	9.72	31	301.32
M3-M1	4.86	13	63.18
M3-M2	6.48	35	226.8
Fringe Cap			
	-		
Layers	Length (µm)	aF/(µm)	Cap (af)
Layers Poly-Sub	Length (μm) 37.8	aF/(μm) 0	Cap (af) 0
Layers Poly-Sub M1- Sub	Length (μm) 37.8 9	aF/(μm) 0 49	Cap (af) 0 441
Layers Poly-Sub M1- Sub M2-sub	Length (μm) 37.8 9 15.6	aF/(μm) 0 49 33	Cap (af) 0 441 514.8
Layers Poly-Sub M1- Sub M2-sub M3-Sub	Length (μm) 37.8 9 15.6 9.6	aF/(μm) 0 49 33 23	Cap (af) 0 441 514.8 220.8
Layers Poly-Sub M1- Sub M2-sub M3-Sub M1-Poly	Length (µm) 37.8 9 15.6 9.6 5.4	aF/(μm) 0 49 33 23 59	Cap (af) 0 441 514.8 220.8 318.6
Layers Poly-Sub M1- Sub M2-sub M3-Sub M1-Poly M2-Poly	Length (μm) 37.8 9 15.6 9.6 5.4 7.2	aF/(μm) 0 49 33 23 59 38	Cap (af) 0 441 514.8 220.8 318.6 273.6
Layers Poly-Sub M1- Sub M2-sub M3-Sub M1-Poly M2-Poly M3-Poly	Length (μm) 37.8 9 15.6 9.6 5.4 7.2 3.6	aF/(μm) 0 49 33 23 59 38 28	Cap (af) 0 441 514.8 220.8 318.6 273.6 100.8
Layers Poly-Sub M1- Sub M2-sub M3-Sub M1-Poly M2-Poly M3-Poly M2-M1	Length (μm) 37.8 9 15.6 9.6 5.4 7.2 3.6 5.4	aF/(μm) 0 49 33 23 59 38 28 51	Cap (af) 0 441 514.8 220.8 318.6 273.6 100.8 275.4
Layers Poly-Sub M1- Sub M2-sub M3-Sub M1-Poly M2-Poly M3-Poly M2-M1 M3-M1	Length (µm) 37.8 9 15.6 9.6 5.4 7.2 3.6 5.4 3.6	aF/(μm) 0 49 33 23 59 38 28 51 34	Cap (af) 0 441 514.8 220.8 318.6 273.6 100.8 275.4 122.4

4. Sheet resistance for high resistance poly = $44\Omega \setminus \Box$ Resistance = 3000 Ω No. of squares = 3000/44 = 68

3.

L = 3W; Let's use a $2\lambda \times 2\lambda$ for one square. The following layout is approximately 68 squares and the bounding rectangle meets the aspect ratio requirements.

Problem 5.

Designing a Capacitor using N^+ active and Poly 1

$$C = C_p x Area$$

$$C_p = 2434 x \, 10^{-18}$$

 $C = 150 x \, 10^{-15}$

$$Area = \frac{C}{C_p} = \frac{150 \ x \ 10^{-15}}{2434 \ x \ 10^{-18}} = 61.63 \mu m$$

Problem 6

Nominal Value of resistance =
$$\rho \cdot \frac{\text{Length}}{\text{H}_{rea}}$$

From table/calculator relating p to resistivity
 $\Rightarrow \rho = 22.34 \text{ p. cm} = 22.34 \times 10^{-2} \text{ p.m}$
 $\Rightarrow \text{ height (thickness)} = 0.1 \mu \text{m}$
 $\Rightarrow \text{ Area} = 0.4 \mu \text{m}^2$
Length = $50 \mu \text{m}$
 $\Rightarrow \text{ Nominal Value of resistance} = \frac{50}{0.4 \times 10^6} \times 22.34 \times 10^2$
 $= 27.925 \text{ M-P}$

7. Part A:

Begin by calculating the number of squares in each serpentine structure. We can calculate the number of horizontal lines in the serpentine structures as follows:

$$\begin{array}{cc} Length_{die} & 1cm \\ N_{Horizontal} = & & \\ \hline Width_{Interconnect} + Width_{Spacing} & & \\ \hline 0.2 \mu m \end{array}$$

So we have 50,000 horizontal lines, each 1cm long. This amounts to 5×10^9 squares.

To connect these lines, we have $N_{Horizontal} - 1$ vertical segments, each 0.1μ wide. This amounts to 49,999 squares.

In total, we have $5 \times 10^9 + 49999$ squares per resistor. Each metal layer has a resistivity of $0.12\Omega/sq$, so each resistor has a resistance of $600M\Omega$. When combined in parallel, we have a resistance of $200M\Omega$.

Part B:

Each resistor is only $0.1\mu m$ thick, so each can carry a maximum density of $150\mu A$. Placed in parallel, this means the total resistor can carry up to $450\mu A$.

Part C:

$$P = I^2 R = [450\mu A]^2 [200M\Omega] = 40.5W$$

Problem 8 If the resistance in the interconnect is
reglected, it acts as a capacitor in parallel with the
input capacitance of the second inverter.
$$C_r = (Cd)(WL)$$

a) $Rpd = 2K$ $t_{HL} = Rpd(C_L)$ $Cd = 27af/u^2$
 $C_r = (6m)^2 (27af/u^2)$
 $= 9.7Af$
 $C_L = 3fF + 9.7aF = 3.01RF$
 $\therefore t_{HL} = 6.02psec$
b) $Ff = L = 200m$
 $C_r = (.6)(200) 27af/u^2 = 3.24FF$
 $\therefore t_{HL} = (2K)(6.24FF) = 12.5psec$

c) The only change with poly (again negleting the interconnect resistance) is Cd=84af/u² so $C_1=(0.6)(200)84af/u^2 = 10.1$ fF so $C_1=13.1$ fF and thus tHL=(2K)(10.1fF)=20.2psec